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Abstract

The vascularization of smart materials with the property of localized self-cooling is investigated here on the basis of a simple config-
uration. A solid body (slab) is subjected to intense heat flux from one side; temperatures are controlled by pumping a coolant from the
other side. The coolant flows through parallel channels that traverse the slab. The objective is to find the channel configuration that
maintains the least nonuniform temperature distribution in the solid (i.e., the coolest hot spots). The optimal spacing between channels
and the minimum hot-spot excess temperature are deduced analytically for two configurations, equidistant parallel-plates channels, and
arrays of equidistant parallel cylindrical channels. These analytical results are confirmed based on numerical simulations of the conjugate
heat transfer in channels and surrounding solid material. The results for the optimal geometry and performance are robust: they are
essentially the same for parallel-plates and cylindrical channels.
� 2007 Elsevier Ltd. All rights reserved.
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1. Vascularized smart materials

Engineering is witnessing a surge of interest in bio-
inspired designs of flow architectures that promise superior
properties, for example, volumetrically distributed and
high-density heat and mass transfer. A stimulus for this
new direction is the emergence of constructal theory [1]
as a means to explain biological and geophysical design,
and as a method for developing new concepts for engi-
neered flow architectures. This new research direction
was reviewed in Refs. [2,3], and is not reviewed again here
(see also the last paragraph).

The new drive to discover novel flow architecture comes
at a time when the development of smart materials is
undergoing a vascularization revolution. Future smart
materials promise entirely new functionality (e.g., self-heal-
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2007.01.020

* Corresponding author. Tel.: +1 919 660 5309; fax: +1 919 660 8963.
E-mail address: dalford@duke.edu (A. Bejan).
ing, self-cooling [4–8]) which rests squarely on the ability to
bathe on demand—at every point—solid bodies that per-
form more traditional functions (mechanical loading, sens-
ing, actuating, morphing). Constructal theory [1,2] serves
the vascularization needs of new smart structures ideally,
because it frees the mind to discover the configuration,
i.e. to morph the flow architecture in time in the direction
of configurations that provide greater access.

In this paper we consider the challenge to vascularize a
solid body with the ultimate objective of building into the
body structure the function of self-cooling. The body
may experience sudden or steady heating from one side.
The need is to send a coolant to the heated spots fast, effi-
ciently and reliably. For this the body design needs vascu-
larization, which must carry the coolant from one entry
point to the finite-size area that needs cooling.

In the present study we take the first step, the most fun-
damental, and model the whole problem on one axis
(Fig. 1): the solid body is in the middle, the heat attack
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Nomenclature

a, b exponents, Section 5
B pressure drop number, Be, Eq. (18)
cP specific heat at constant pressure, J/kg K
D channel thickness, m
g function, 32//
H spacing between channels, m
k specific heat, W/m K
K permeability, m2

L length, m
q00 heat flux, W/m2

V volume averaged velocity, m/s
T temperature, K
x, y cartesian coordinates, m

Greek symbols

a thermal diffusivity of porous medium, Section
2.1

DT temperature difference, K
e convergence criterion
l viscosity, kg/sm
q density, kg/m3

/ volume fraction

Subscripts

f fluid
max maximum
min minimum
opt optimum
s solid
x measured along x

y measured along y
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Fig. 1. Two-dimensional parallel channels across a slab with heat flux
from one side and forced flow of coolant from the other side.
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comes from the left, and the coolant is forced from the
right. The solid slab of thickness L and thermal conductiv-
ity k is heated from one side with uniform heat flux q00. The
other side is insulated. The slab is cooled by a single-phase
fluid that flows transversally (along L) against the direction
of q00. The flow is driven by a fixed pressure difference DP.
The fluid flows through parallel slots of width D, one slot
for each interval H along the wall. The porosity of the wall
(/ = D/H) is fixed.

The lowest temperature (Tmin) in this flow structure is
the fluid inlet temperature. The highest temperature (Tmax)
occurs in hot spots located on the wall surface that receives
q00. The objective is to determine the internal spacing D

such that the maximum excess temperature (DT =
Tmax � Tmin) is minimum. In other words, we are interested
in identifying the internal flow architecture that guarantees
the least nonuniform distribution of temperature in the
solid. The flow structure is destined to remain imperfect,
with cold spots on the surface entered by the fluid, and
hot spots on the surface bombarded with q00. The objective
in this paper is to identify the least imperfect structure
possible.

2. Analytical solution

The analysis that follows is an application of the inter-
section of asymptotes method [9], which consists of devel-
oping analytically the relationship between the global
objective (DT) and the varying geometry (D) in the two
extremes, D ? 0 and D ?1, and using these asymptotes
to argue that DT can be minimized by selecting D. The
optimal D value is located approximately by intersecting
the asymptotes.

2.1. The small D limit

Because the porosity is fixed, the limit D ? 0 also means
H ? 0. The L layer can be treated as a fluid saturated
porous medium with Darcy flow. The uniform volume
averaged velocity V points in the negative x direction,

V ¼ K
l

DP
L

ð1Þ

The permeability K associated with Poiseuille flow through
D-thin fissures is [9]

K ¼ D2

12
ð2Þ

The temperature distribution across the L is obtained by
solving the energy equation

�V
dT
dx
¼ a

d2T
dx2

ð3Þ
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Fig. 2. The ‘square’ pattern of heat conduction in the large-D limit.
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subject to the boundary conditions

q00 ¼ �k
dT
dx

at x ¼ 0 ð4Þ

T ! T min as x!1 ð5Þ

The thermal diffusivity of the saturated porous medium is
defined as a = k/(qcP)f, where (qcP)f is the heat capacity
of the fluid, and k is the effective thermal conductivity of
the porous medium with the fluid filling its pores. Because
the fluid-filled spaces are parallel to the solid parts, and be-
cause both are parallel to the direction of heat flow, the
effective thermal conductivity is [9]

k ¼ /kf þ ð1� /Þks ð6Þ

The solution to Eqs. (3)–(5) is

T � T min ¼
q00a
kV

e�Vx=a ð7Þ

and shows that the effect of q00 propagates into the porous
structure to a depth x of order a/V. This means that the
boundary condition (5) holds when the penetration depth
is smaller than the slab thickness

a
V
< L ð8Þ

Finally, from Eq. (7) we find the maximum excess temper-
ature DT = Tmax � Tmin, which occurs on the x = 0 surface

DT ¼ q00a
kV

ð9Þ

After using Eqs. (1) and (2), this result becomes

DT ¼ 12
q00lL

D2DP ðqcPÞf
ð10Þ

The first conclusion then is that the maximum excess tem-
perature DT increases as D ? 0. We are interested in smal-
ler DTs, and because of this we turn our attention to how
DT depends on D in the opposite limit.
2.2. The large D limit

Consider now a situation in which D (or H = D//) is
sufficiently large that the coolant flows through the chan-
nels without experiencing a significant rise in temperature.
In this limit, the dominant thermal resistance between the
surface with imposed heat flux q00 and the channel surface
(the heat sink) is due to heat conduction in square chunks
of solid of dimension H/2. One such element is shown in
Fig. 2. The left side of the square is heated with the flux
q00, the top side is isothermal at Tmin, and the bottom and
right sides are adiabatic. The square shape of the domain
is not assumed. It follows from the energy equation for
steady conduction in a rectangular domain:

o
2T

ox2
þ o

2T
oy2
¼ 0 ð11Þ
which requires DT =L2
x � DT=ðH=2Þ2, or that the path of

heat conduction in the x direction (Lx, Fig. 2) must have
the same length scale as the path in the y direction,

Lx �
H
2

ð12Þ

The conservation of heat current through the Lx � (H/2)
element requires

q00
H
2
� ks

H
2

DT x

Lx
� ksLx

DT y

H=2
ð13Þ

These relations can be used to estimate the overall temper-
ature difference scale

DT � DT x þ DT y �
q00

ks

Lx þ
H 2

4Lx

� �
ð14Þ

which in view of Eq. (12) becomes

DT � q00H
ks

� q00D
ks/

ð15Þ

This result is valid when the square element Lx � (H/2) is
present, i.e. when the spacing H/2 is smaller than the slab
thickness,

H
2
< L ð16Þ

The conclusion drawn from Eq. (15) is that in the large D

limit the DT scale increases as D increases.

2.3. The intersection of asymptotes

Put together, Eqs. (10) and (15) indicate that because DT
increases in both extremes, it must be minimum at an inter-
mediate D (or /H) value, which can be found approxi-
mately by intersecting the asymptotes. The result is



Table 1
The values of the group B/2kf/ks > 1 for the cases used in the study

B / = 0.1 / = 0.2

ks/kf = 10 30 100 10 30 100

106 103 3.3 � 102 102 4 � 103 1.3 � 103 4 � 102

107 104 3.3 � 103 103 4 � 104 1.3 � 104 4 � 103

108 105 3.3 � 104 104 4 � 105 1.3 � 105 4 � 104

2

H

L

q''
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b'b

2
D

V

Tmin

Tmax

Fig. 3. Elemental fluid–solid volume selected for numerical simulation.

S. Kim et al. / International Journal of Heat and Mass Transfer 50 (2007) 3498–3506 3501
H opt

L
ffi ð12Þ1=3/�2=3B�1=3 ks

kf

� �1=3

ð17Þ

where B is the dimensionless pressure drop (or Be [9])

B ¼ DP � L2

afl
ð18Þ

and af = kf/(qcP)f. The corresponding minimum DT is
obtained by substituting Hopt into Eq. (15)

DT min ffi ð12Þ1=3 q00

ks

L/�2=3B�1=3 ks

kf

� �1=3

ð19Þ

In the course of developing these results we made two
assumptions, Eqs. (8) and (16). By using the optimal spac-
ing (17), we find that Eqs. (8) and (16) require, respectively

ð12Þ�1=3/2=3B1=3 ks

kf

� ��1=3
1

1� /ð1� kf=ksÞ
> 1 ð20Þ

2

3

� �1=3

/2=3B1=3 ks

kf

� ��1=3

> 1 ð21Þ

In other words, conditions (8) and (16) are essentially the
same, and are valid when the group B/2kf/ks is greater than
1. Table 1 shows that this condition is met by the cases
studied numerically in this article.

In summary, the best parallel-channels structure for sup-
pressing the hot spots that form on the q00 surface of the
slab has the spacings shown in Eq. (17). The minimized
hot spot temperature DTmin decreases further by increasing
the applied pressure difference (B), and by making the
channel-to-channel spacings smaller.

3. Numerical results

The analytical trends were investigated further by means
of numerical simulation and optimization of the heat and
fluid flow system of Fig. 1. Because the geometry is periodic
in the H direction, it is sufficient to compute the flow and
temperature patterns in the elemental volume contained
between planes a–a0 and b–b0 in Fig. 3. As shown in the
lower part of Fig. 3, the two-dimensional conduction
through the solid part is conjugate with convection along
the half-channel. The flow system is steady. The flow
through the channel is not assumed fully developed: this
flow is developing as a result of the pressure difference
(DP) maintained between the two ends of the channel.
The flow rate through one channel is one of the results of
the numerical simulation of the heat and fluid flow fields.
The numerical work consisted of three phases. First, we
made sure that the numerical results for each assumed case
(assumed D, and fixed external parameters, e.g., DP, L, /,
q00, material properties) are sufficiently well converged. Sec-
ond, we conducted several simulations by varying the D
value while holding the parameters fixed. We did this in
order to identify the optimal configuration (D) in which
DT is minimal. Third, we correlated the optimized numer-
ical results in the manner indicated by the analytical solu-
tion (Eqs. (17) and (19)). This final phase was also an
opportunity to verify the analytical results and to describe
more accurately their domain of validity.

The computational heat and fluid flow technique was
provided by a commercial software [10]. This software pro-
vides non-structural grids for a given geometry. Grid fine-
ness was determined using a procedure similar to the
accuracy test. We increased the number of elements in steps
of 100 beginning with 500. The number of elements is cho-
sen when the criterion e is less than 0.5%

T i � T i�1

T i�1

< e ð22Þ

In this equation, Ti is a certain spot temperature calculated
for ith case (in case no. 1 there were 500 elements, in case
no. 2 there were 600 elements, etc.). When using B = 106,
q00 = 105 W/m2, H

L ¼ 0:5, L = 1 m, / = 0.2 for water as
coolant and 304 stainless steel as solid, numbers of ele-
ments greater than 1100 are needed to satisfy Eq. (22).
However, for the sake of accuracy, we used more than
2000 elements. One feature of this computational package
is that all the physical properties and dimensions of the
flow system must be specified in dimensional terms. Conse-
quently, we built the numerical work as a sequence of
assumed physical cases, as shown in Table 2. For each case,
we specified a set of dimensions and material properties,
which also mean that B, / and ks/kf are specified. The cases
selected for numerical study test the sensitivity of these
results in several directions: fluid–solid pairs, cooling
intensity (B), porosity (/), etc.

Fig. 4 is an illustration of the temperature field simu-
lated for case 10 in three configurations, H/L = 0.20, 0.31
and 0.68. This sequence corresponds to three of the points



Table 2
Cases simulated and optimized numerically (kf = 0.613 W/m K,
q00 = 100 kW/m2, L = 0.01 m)

Case ks

kf

/ DPL2 [Pa m2] B

1 10 0.1 1.254 � 10�4 106

2 10 0.1 1.254 � 10�3 107

3 10 0.1 1.254 � 10�2 108

4 30 0.1 1.254 � 10�4 106

5 30 0.1 1.254 � 10�3 107

6 30 0.1 1.254 � 10�2 108

7 100 0.1 1.254 � 10�4 106

8 100 0.1 1.254 � 10�3 107

9 100 0.1 1.254 � 10�2 108

10 10 0.2 1.254 � 10�4 106

11 10 0.2 1.254 � 10�3 107

12 10 0.2 1.254 � 10�2 108

13 30 0.2 1.254 � 10�4 106

14 30 0.2 1.254 � 10�3 107

15 30 0.2 1.254 � 10�2 108

16 100 0.2 1.254 � 10�4 106

17 100 0.2 1.254 � 10�3 107

18 100 0.2 1.254 � 10�2 108

(a) s/m1098.1V;2.0,10Bk10k,20.0L/H 36
,fs

−×==φ===

(b) s/m1065.4V;2.0,10Bk10k,31.0L/H 36
,fs

−×==φ===

(c) s/m108.17V;2.0,10Bk10k,68.0L/H 36
,fs

−×==φ===

(d) Example of velocity profile development ( .2 0,68.0L/H,10B 6 =φ== )

Fig. 4. Samples of temperature and velocity results.
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shown on the B = 106 and / = 0.2 curve in Fig. 5. We gen-
erated such sequences by varying D (or H) until the overall
temperature difference across the elemental volume
(DT = Tmax � Tmin) reached its minimum value. Fig. 5
shows that the DT minimum is well defined, and that its
position on the DT–H/L map depends on B. The optimized
H/L and the minimized DT decrease as B increases.

After performing this geometry optimization work for
all the cases listed in Table 1, we collected the results
[Hopt/L, DTmin] and projected them in dimensionless terms
as shown in Figs. 6 and 7. For the optimal channel-to-
channel spacing, we used the group (Hopt/L) /2/3 (kf/ks)
1/3

on the ordinate, as suggested by Eq. (17). This group is
expected to vary as B�1/3, and the numerical results con-
firm this trend.

For the minimized overall DT, we used the group
DTminks/(q

00L)/2/3(kf/ks)
1/3 on the ordinate. This dimen-

sionless group is suggested by Eq. (19), according to which
the group should be proportional to B�1/3. The optimized
numerical cases confirm this trend as well.
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Fig. 8. Round channels across a slab with heat flux from one side and
forced flow from the other side.
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Together Figs. 6 and 7 show that the numerical results
validate the analytical formulas. Furthermore, the numeri-
cal and analytical results show that in all the optimized
configurations the global parameters (/ and B) influence
in the same way Hopt/L and DTmin. This peculiarity of
the optimized configurations can be expressed succinctly
as a proportionality between DTmin and Hopt/L, which is
obtained by dividing Eq. (19) by Eq. (17):

DT min

H opt=L
ffi q00L

ks

ð23Þ
Table 3
Cases simulated and optimized numerically (kf = 0.613 W/m K,
Note that this agrees with Eq. (15), because each of the
optimized configurations represented by Eq. (23) finds it-
self at the intersection of Eqs. (15) and (10).
q00 = 100 kW/m2, L = 0.01 m)

Case ks

kf

/ DPL2 [Pa m2] B

1 10 0.05 1.254 � 10�4 106

2 10 0.05 1.254 � 10�3 107

3 10 0.05 1.254 � 10�2 108

4 30 0.05 1.254 � 10�4 106

5 30 0.05 1.254 � 10�3 107

6 30 0.05 1.254 � 10�2 108

7 100 0.05 1.254 � 10�4 106

8 100 0.05 1.254 � 10�3 107

9 100 0.05 1.254 � 10�2 108

10 10 0.1 1.254 � 10�4 106

11 10 0.1 1.254 � 10�3 107

12 10 0.1 1.254 � 10�2 108

13 30 0.1 1.254 � 10�4 106

14 30 0.1 1.254 � 10�3 107

15 30 0.1 1.254 � 10�2 108

16 100 0.1 1.254 � 10�4 106

17 100 0.1 1.254 � 10�3 107

18 100 0.1 1.254 � 10�2 108
4. Parallel round channels across a slab

An alternate configuration for fighting the heat flux by
forcing coolant from the opposite side is shown in Fig. 8.
The coolant flows through channels with round cross-sec-
tion (diameter D, length L). Assume that the channels are
arranged in a square pattern with the distance H between
tube centers. Because of periodicity in the H direction, it
is sufficient to optimize the configuration of a single volume
element with the volume H � H � L, which has a single
channel centered on its long axis of symmetry.

The analysis of this volume element is completely anal-
ogous to what we presented in Section 2 for the two-dimen-
sional elemental volume of Fig. 3. In this section we
highlight the differences. In place of Eqs. (2), (10) and
(15) now we have [9]
K ¼ D2

g
; / ¼ pD2

4H 2
ð24Þ

D T ffi g
q00lL

D2DP ðqcPÞf
ð25Þ

DT ffi q00

ks

� 3H
4

ð26Þ

where g = 32//. The intersection of the asymptotes (25)
and (26) yields

H opt

L
ffi 32

3
p

� �1=3

/�2=3B�1=3 ks

kf

� �1=3

ð27Þ

DT min ffi
3

4

32

3
p

� �1=3 q00

ks

L/�2=3B�1=3 ks

kf

� �1=3

ð28Þ

Important is the observation that these optimization
results agree within a factor of order 1 with the correspond-
ing results for two-dimensional channels (Section 2). This
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means that the scaling laws (17), (19), (27) and (28) are
robust. They depend on global parameters of the structure
(/, B, L, q00, ks, kf), not on the cross-sectional shapes of the
channels through which the coolant is forced to flow.
Robustness is a precious quality in rules that are used for
sizing complex flow architectures.

We tested numerically the validity of Eqs. (27) and (28)
by using the same procedure as in Section 3. Table 3 shows
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Fig. 10. The minimized global temperature difference for the configura-
tion of Fig. 8.
the properties for the cases considered in this study. With
reference to Fig. 8, we simulated numerically the conjugate
heat transfer in an elemental volume H � H � L with
developing laminar flow through a central duct of diameter
D. For each assumed elemental configuration, we estimated
the maximum temperature Tmax, which forms in the cor-
ners of the H � H square in the exit plane. The lowest tem-
perature (Tmin) is the inlet temperature of the coolant. We
searched through many configurations with differing H val-
ues until we found the configuration with the smallest
DT = Tmax � Tmin. The results for Hopt/L and DTmin are
reported in Figs. 9 and 10. The agreement between these
numerical results and predictions based in Eqs. (27) and
(28) is adequate (within a factor of order 1). This level of
agreement between numerical testing and the intersection
of asymptotes method is the same as in Figs. 6 and 7.
This finding adds to the robustness of the scaling trends
developed analytically.
5. Discussion

In this paper we have taken a fundamental look at the
proposal to vascularize a wall such that the coolant pushed
in from one side is effective in fighting off the intense heat-
ing that strikes the slab from the other side. The fundamen-
tal conclusion of this investigation is that it is possible to
select the internal configuration of the flow system (the vas-
cularization) such that the solid body is protected most
effectively against overheating.

The main results of this work are the formulas that indi-
cate the optimal configuration for vascularization [Eqs.
(17) and (27)] and the minimized temperature nonunifor-
mity of the flow system [Eqs. (19) and (28)]. These results
have been validated based on numerical simulations of heat
and fluid flow in two-dimensional and three-dimensional
geometries (Figs. 1 and 8). The results teach the designer
how to size the internal vasculature, and what to expect
as performance when the heat flux and the pressure differ-
ence are specified.

Important is also the robustness of these results: Eq. (17)
looks like Eq. (27) and Eq. (19) looks like Eq. (28). The
numerical simulation and optimization work showed that
the B�1/3 trend anticipated by these formulas is correct,
but that the trends with respect to changes in / and kf/ks

are correct only qualitatively. In this concluding section
we take a closer look at the / and kf/ks effects, in order
to describe more accurately the robustness of the results.

Because of Eqs. (17), (19), (27) and (28), we correlated
the numerical optimization results by plotting on the ordi-
nates of Figs. 6, 7, 9 and 10 the groups

Hopt

L
/a kf

ks

� �b DT minks

q00L
/a kf

ks

� �b

The theoretical exponents are a = 2/3 and b = 1/3. These
exponents are not the best, as indicated by the scatter in
the numerical data plotted in Figs. 6, 7, 9 and 10.
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In the construction of the new Figs. 11–14, we allowed
the exponents a and b to vary until all the numerical data
collapsed on the respective analytical curve. In this way
we discovered the empirical constants (a and b) with which
to correlate the numerical and analytical results. These
constants are reported in Table 4, and are valid over the
parametric domain covered by the cases simulated numer-
ically (Table 2). It is clear that the empirically optimized
constants (a and b) are of the same order of magnitude
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Table 4
Comparison between the optimized exponents (a and b) and the analytical
values

H/L, 2-D
Fig. 11

DTmin, 2-D
Fig. 12

H/L, 3-D
Fig. 13

DTmin, 3-D
Fig. 14

Analytical
results

a 1.27 0.70 0.85 0.60 0.67
b 0.21 0.56 0.17 0.65 0.33
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as the theoretical exponents. Once again, this means that
Eqs. (17), (18), (27) and (28) are robust, however, for
greater accuracy the designer should rely on the empirically
fitted correlations displayed in Figs. 11–14.

The fast growing research literature on constructal the-
ory, design and vascularized smart materials was just
reviewed in Refs. [11,12].
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